
An Algorithm to Solve the Proportional Network Flow Problem

David R. Morrison, Jason J. Sauppe, Sheldon H. Jacobson

April 1, 2013

Abstract

The proportional network flow problem is a generalization of the equal flow problem on
a generalized network in which the flow on arcs in given sets must all be proportional. This
problem appears in several natural contexts, including processing networks and manufacturing
networks. This paper describes a transformation on the underlying network that reduces the
problem to the equal flow problem; this transformation is used to show that algorithms that
solve the equal flow problem can be directly applied to the proportional network flow problem
as well, with no increase in asymptotic running time. Additionally, computational results are
presented for the proportional network flow problem demonstrating equivalent performance to
the same algorithm for the equal flow problem.

1 Introduction

The equal flow problem, which was first introduced by Ali et al. (1988), is a widely-studied variant

of the standard minimum-cost network flow problem. In this problem, side constraints are added to

the minimum-cost flow formulation that stipulate that the flow on given sets of arcs (called equal

flow sets) must all be equal. Ahuja et al. (1999) and Calvete (2003) derive network-simplex-based

algorithms that are able to solve the equal flow problem on pure networks with good worst-case time

guarantees. Morrison et al. (2013) provide an extension of this algorithm called GenNetEq that is

able to solve the equal flow problem on a generalized network–that is, a network with multiplicative

arc factors that increase or decrease the amount of flow traveling over the arcs (Ahuja et al., 1993).

Though GenNetEq has slightly worse complexity bounds than the algorithm of Calvete (2003), it

improves upon the per-iteration complexity of the standard simplex method.

The proportional network flow problem (referred to herein as the proportional flow prob-

lem) is a further generalization of the equal flow problem on a generalized network that relaxes the

equal flow constraints. Instead of requiring the flow on all arcs in an equal flow set to be equal, the

proportional flow problem requires the flow on arcs in the set (now called a proportional flow

set) to be proportional to each other (with the proportions specified in the problem input).

1

The proportional flow problem has a number of applications: processing networks, which were

first introduced by Koene (1982), and further studied by Chang et al. (1989), are a specific type of

proportional flow problem in which all arcs in a proportional flow set originate from a single node.

In particular, processing networks are useful in the study of energy and pollution models (Chinneck,

1995) and forestry management (Chinneck and Moll, 1995). Additionally, Bahçeci and Feyziog̃lu

(2012) describe a network simplex algorithm for the proportional flow problem on a network that

is comprised of a number of disconnected subnetworks that arises in a supply and manufacturing

network.

The main contribution of this paper is to show that the proportional flow and equal flow

problems are in fact equivalent problems from both a theoretical and computational perspective.

A modification of the graph structure for the proportional flow problem is shown to transform it

into an instance of the equal flow problem; this transformation is then used to show how GenNetEq

can be used to directly solve the proportional flow problem with no increase in running time.

Computational results are presented to show this equivalence from a practical standpoint, as well.

In the following section, the proportional flow problem on a generalized network is formally

defined; Section 3 gives a brief overview of the GenNetEq algorithm, and Section 4 describes a graph

modification that allows GenNetEq to solve the problem. Based on this modification, Section 5

shows how to apply GenNetEq directly to an instance of the proportional flow problem without

modifying the graph. Section 6 presents computational results for an implementation of GenNetEq

on the proportional flow problem. Finally, Section 7 gives some conclusions and future research

directions.

2 The Proportional Flow Problem

The proportional flow problem is defined on a directed graph G = (N,A) where N is the set

of nodes and A is the set of (directed) arcs in the graph. A supply vector b is given with entries

for each node i ∈ N . If bi > 0, node i is a source; if bi < 0, node i is a sink, and if bi = 0, node i is

a transshipment node.

Each arc (i, j) ∈ A, has an associated cost cij , an associated capacity uij > 0, and an associated

multiplicative factor µij ≥ 0. The multiplicative factor is such that if xij units of flow are sent from

2

node i to node j along arc (i, j), then µijxij units of flow arrive at node j. If µij > 1, then arc (i, j)

is gainy, and if µij < 1, then arc (i, j) is lossy. Otherwise, µij = 1 and arc (i, j) is breakeven.

Furthermore, a collection of tuples P = {P1, P2, ..., Pk} is given, where P` = (X`, a`, q`). Each

X` is a (pairwise-disjoint) subset of network arcs, with a` ∈ X`, and q` : X` → R+ with q`(a`) = 1,

` ∈ {1, 2, ..., k}. The arc a` is referred to as the canonical arc for the `th proportional flow set,

and the function q` is the `th proportion function, which specifies the proportionality constants

for the other arcs in the proportional flow set. Each proportional flow set has a cost c` representing

the additional cost incurred by sending a unit of flow over a`.

The objective of the proportional flow problem on a generalized network is to find a feasible

flow function f : A → R of minimum cost that satisfies the demand at every node, as well as the

additional proportionality property: for each P` ∈ P and each arc (i, j) ∈ X`, fij = q`(i, j)fa` . As

in the equal flow problem, the proportional flow problem on a generalized network can be modeled

as a linear program. To see this, for each i ∈ N , define

d`(i) =
∑

(i,j)∈X`

q`(i, j)−
∑

(j,i)∈X`

q`(j, i)µji

This quantity represents the net change in flow at node i if a single additional unit of flow

travels along the canonical arc for proportional flow set P`. Also define u` and c` as the capacity

function and cost function for P`, respectively. Namely u` = min(i,j)∈X`
uij , and c` is the sum of

the costs of the individual arcs in P`. Lastly, define A′ to be the set of arcs not contained in any

proportional flow set, xij to be the flow over an arc (i, j) ∈ A′, and x` to be the flow over the

canonical arc for equal flow set P`. Then, the linear programming formulation for the proportional

flow problem is given by

minimize
∑

(i,j)∈A′

cijxij +
k∑
`=1

c`x`

subject to
∑

j:(i,j)∈A′

xij −
∑

j:(j,i)∈A′

µjixji +

k∑
`=1

d`(i)x` = bi, ∀ i ∈ N

0 ≤ xij ≤ uij , ∀ (i, j) ∈ A′

0 ≤ x` ≤ u`, ∀ ` = 1, 2, ..., k

(1)

3

Note that the equal flow problem arises as a special case of the proportional flow problem by

setting q`(i, j) = 1 for all ` and all (i, j) ∈ X`. In this case, the collection of equal flow sets is denoted

by R = {R1, R2, ..., Rk}, where R` ⊆ A for each `. Additionally, note that (1) is polynomially-sized

in the input, and hence, can be solved efficiently using standard linear programming techniques.

The primary contribution of this paper is to introduce a network-simplex-based algorithm that is

able to operate directly on the underlying graph structure, and thus perform better in the worst

case than the standard simplex algorithm. In particular, since the structure of the LP for the

proportional flow problem and the equal flow problem are so similar, it is desirable to be able to

apply GenNetEq to the proportional flow problem.

3 The GenNetEq Algorithm

The GenNetEq algorithm from Morrison et al. (2013) is a network-simplex-based algorithm that

maintains a basis structure called a S-augmenting forest, where S ⊆ R. This basis structure

consists of t ≥ 0 type I trees (i.e., a tree with an associated extra arc that forms a cycle in the

tree) and |S| type II trees (i.e., trees with no extra arc), whose union collectively spans G.

Given an S-augmenting forest F for G, define C to be the submatrix of the constraint matrix

of (1) consisting of rows and columns corresponding to nodes and arcs in the type II trees of F ,

together with columns corresponding to the equal flow sets (since GenNetEq operates on instances

of the equal flow problem, all proportionality constants are 1). Then F is good if C has full rank.

The GenNetEq algorithm moves from one good S-augmenting forest to another via pivots; a

pivot finds one arc or equal flow set that violates the optimality conditions given by the reduced

arc costs (and thus whose inclusion may improve the objective function value). To maintain the

basis structure, the pivot then removes an arc or equal flow set from the basis that is saturated

first when pushing flow over the entering variable.

At each iteration of the algorithm, GenNetEq calls a subroutine called ComputeFlows, which

updates the flow values on the arcs and equal flow sets in the graph. To do this, the flows on

the type II trees are computed in terms of the (unknown) equal flow set variables. Then, since

C has full rank, the flows on the equal flow sets can be computed using the system of equations

at the root of each type II tree. Finally, the flows on the type I trees are computed using the

4

standard algorithm for generalized networks (Ahuja et al., 1993). The ComputeFlows procedure

runs in O(m′ + np+ p3) time, and is the bottleneck procedure for GenNetEq.

4 A Graph Transformation

The presence of the multiplier function µ allows for a simple graph transformation to be performed

to encode the proportionality function q` for each proportional flow set in the actual graph structure

itself; once this reduction is performed, GenNetEq can be run on the resulting network to solve the

problem.

The transformation is as follows: for each proportional flow set P` ∈ P, replace each non-

canonical arc (i, j) ∈ X` with a directed path containing nodes αij , βij , γij , and δij , and three arcs

(αij , βij), (βij , γij), (γij , δij) (see Figure 1; when the meaning is clear from context, the subscripts

on these nodes is dropped). Set µαβ = 1/q`(i, j), µβγ = µij , and µγδ = q`(i, j). Furthermore,

set cαβ = cγδ = 0, cβγ = q`(i, j) · cij , uαβ = uγδ = ∞ and uβγ = uij/q`(i, j). Finally, set

bβ = bγ = 0, and call the resulting network G′. Construct equal flow sets R = {R1, R2, ..., Rk} such

that R` = {(βij , γij) | (i, j) ∈ X`, (i, j) 6= a`} ∪ {a`}.

αij βij γij δij

i j
cij, uij, µij

0,∞, 1
q`(i,j)

cij q`(i, j),
uij

q`(i,j)
, µij 0,∞, q`(i, j)

=⇒

Figure 1: A proportional flow arc ij ∈ G gets replaced by a path αijβijγijδij in G, where βijγij
is an equal flow arc. The values shown above each arc are the cost, capacity, and multiplicative
factor, respectively.

The network G′ together with the collection of equal flow sets R is a valid instance of the

equal flow problem, and thus algorithm GenNetEq can be applied to compute an optimal solution

or determine that the problem is infeasible. Once such a solution f ′ has been determined, it can

be transformed to the original problem by letting fij = f ′ij for all arcs (i, j) not in a proportional

flow set and for all canonical arcs belonging to proportional flow sets. Additionally, for any other

arc (i, j) ∈ X`, let the flow fij equal q`(i, j) · f ′βγ . The following theorem establishes the correctness

of this transformation:

5

Proposition 1. A solution to the proportional flow problem (G,P) is feasible if and only if the

corresponding solution to the equal flow problem (G′,R) is feasible. Furthermore, the cost of the

two solutions are equal.

Proof. Let f ′ be a feasible solution to the equal flow problem on (G′,R). Let j ∈ N be a node

such that j is the head of some path αβγδ corresponding to a proportional flow arc (i, j). By flow

balance at node γ, the flow into j along this path must be

µβγ · f ′βγ · q`(i, j) = µij · f ′a` · q`(i, j) = µij · fa` · q`(i, j) = µijfij

Thus, replacing this path with a single arc (i, j) carrying flow q`(i, j) · fa` maintains flow balance

at node j, and since the flow along βγ is at most uij/q`(i, j), the flow along arc (i, j) is at most

uij , and no capacities are violated.

Similarly, if i is the tail of some path αβγδ corresponding to a proportional flow arc (i, j), by

flow balance at node β, then the flow leaving i along this path must be f ′βγ · q`(i, j), which is equal

to fij . Thus replacing this path with the proportional flow arc does not destroy flow balance at

node i. Finally, note again that the capacities along arc (i, j) are not violated.

An identical proof holds for the reverse direction, starting with a feasible solution to the pro-

portional flow problem on (G,P). Thus, the only remaining point to address is that the cost to

send a unit of flow over any path αβγδ is equal to cβγ = q`(i, j)cij ; consequently, the cost of a

solution to the equal flow problem (G′,R) is equal to the cost of the corresponding proportional

flow problem (G,P). �

The reduction from (G,P) to (G′,R) can be done in time that is linear in the number of arcs

in equal flow sets. Note that performing the above transformation does increase the number of

nodes and arcs in the network that is solved by GenNetEq. While this blow-up is only a constant

factor of the number of arcs in the proportional flow sets, the number of nodes in G′ may increase

substantially, depending on the number of arcs contained in proportional flow sets in G. This gives

a worst-case per-iteration time of O(m′+mp+p3), as compared to the O(m′+np+p3) running time

for solving the equal flow problem. However, it turns out that GenNetEq can be applied directly to

the proportional flow instance, as discussed in the following section.

6

5 Solving the Proportional Flow Problem

While GenNetEq can solve the modified network as shown in Section 4, it can be shown that the

proportional flow problem can be solved directly, with no loss in worst-case running time from the

equal flow problem. To see this, note that the amount of flow on arcs αβ and γδ, as well as the

node potentials at β and γ are irrelevant to the solution. Furthermore, since β and γ each have

exactly two adjacent arcs, the flow on both αβ and γδ can be written in terms of the flow on βγ.

In particular, note that in the LP formulation of the equal flow problem on G′, all occurrences

of xαβ can be replaced with q`(i, j)xβγ , where (i, j) is the corresponding proportional flow arc for

a path αβγδ. Then, deleting the flow balance equation corresponding to node β yields a new

linear program where all instances of the variable xαβ have been eliminated. Similarly, for some

proportional flow arc (i, j), all occurrences of xγδ can be replaced with µijxβγ , and the flow balance

constraint corresponding to node γ can be dropped from the LP formulation (note that this process

deletes exactly two rows and two columns from the LP constraint matrix).

Proposition 2. An S-augmenting forest F for a proportional flow network G is good if and only

if the S-augmenting forest F ′ for the derived equal flow network G′ is good.

Proof. Let D be the submatrix for F ′ containing rows and columns corresponding to nodes and arcs

in the type II trees of F ′, as well as the columns corresponding to the equal flow sets. Additionally,

let Â be the set of arcs in G′ that correspond to αβ or γδ arcs in the transformation from G to G′.

Consider node i ∈ G∩G′; the flow balance constraint at i for the derived equal flow problem is

bi =
∑

j:(i,j)∈A′−Â

xij +
∑

j:(i,j)∈Â

xij −
∑

j:(j,i)∈A′−Â

µjixji −
∑

j:(j,i)∈Â

µjixji

Note, however, that when substituting for the flows on arcs in Â in terms of the flow on equal flow

arcs, and observing that for (j, i) ∈ Â, we have µji = p`(ai) for some ` ∈ 1, 2, ..., k, the resulting

constraint is precisely the flow balance constraint for node i in (1) on G. Deleting the appropriate

rows and columns of D therefore yields the matrix C, and since we have deleted exactly the same

number of rows and columns, C has full rank if and only if D does. �

Proposition 2 implies that the flows on the proportional flow sets of G can be computed by the

7

ComputeFlows subroutine of GenNetEq if and only if the flows on the equal flow sets of G′ can be

computed. In other words, to compute the flow on an instance of the proportional flow problem,

first the flow is solved on the type II trees in terms of the (unknown) proportional flow sets. Then,

since the C matrix has full rank (by Proposition 2), the system of equations induced at the roots

of the type II trees yields the flow values on the proportional flow sets, and the type I trees can be

computed as before. This establishes the correctness of GenNetEq for proportional flow problems; it

should be noted that the theorems presented in Morrison et al. (2013) also establish this correctness,

but do not provide any additional insight into the problem. Finally, since GenNetEq can be directly

applied to the network G, it has a running time of O(m′ + np + p3), as shown in Morrison et al.

(2013).

6 Computational Results

An implementation of GenNetEq was modified to solve the proportional flow problem. Computa-

tional experiments were run to determine its efficacy (the GenNetEq code received minor updates

from Morrison et al. (2013) that result in slightly faster running times, both for the equal flow

problem and the proportional flow problem). This implementation was written in C++, and was

tested on a variety of problem instances generated by a modification of the EFNETGEN algorithm

of Morrison et al. (2013). The experiments were run on a single core of an Intel Core i7-930 2.8

GHz quad-core processor, with 12 GB of available memory.

The EFNETGEN generator (itself based on the GNETGEN algorithm of Klingman et al. (1974)

and Clark et al. (1992)) allows for placement of proportional flow arcs within the network while

maintaining problem feasibility. The proportionality constants are randomly generated for these

arcs in the following manner: the first arc placed for any proportional flow set P` is taken to be

the canonical arc a`. The proportionality constants for the remaining arcs are chosen from the set

{1, 1 + pstep, 1 + 2pstep, ..., pmax}, where pstep and pmax are experimental parameters.

For the experiments, networks were generated with 1200 nodes, and sizes ranging from 71 940

arcs to 647 460 arcs. Problems were generated with 10, 50, 100, 150, and 200 proportional flow

sets, with varying values for pstep and pmax, as given in Table 1; for comparison with the equal flow

problem, one set of instances has pmax = 1. The total number of arcs in proportional flow sets was

8

pmax pstep
1 -
2 1
2 0.1
5 0.5

Table 1: Parameter values used for the proportionality constants. The first entry is the equal flow
problem.

30% of the total number of arcs, and these arcs were distributed evenly among all sets. A total of

30 experiments were performed for all parameter combinations, and results were averaged across

all experiments (shown in Table 2).

10 prop. flow sets 50 prop. flow sets 100 prop. flow sets
Arcs Pivots Time Pivots Time Pivots Time

71 940 9220 3.88 9230 5.09 9270 5.33
143 880 13 800 6.88 13 700 9.25 13 800 10.0
215 820 18 500 10.7 18 500 14.1 18 500 15.2
287 760 23 400 13.8 23 300 17.8 23 300 20.2
359 700 28 200 17.5 28 300 22.2 28 400 25.4
431 640 33 200 22.1 33 100 27 33 100 30.7
503 579 37 900 25.4 38 000 30.7 38 000 35.0
575 520 43 000 29.6 43 100 35.1 42 800 40.0
647 460 48 200 33.9 48 200 39.6 48 100 44.6

150 prop. flow sets 200 prop. flow sets

71 940 9230 5.55 9260 5.74
143 880 13 700 10.5 13 800 10.9
215 820 18 500 16.2 18 500 16.9
287 760 23 300 21.9 23 300 22.8
359 700 28 300 27.8 28 200 29.1
431 640 33 100 33.6 33 000 35.9
503 579 38 000 38.9 37 900 41.4
575 520 43 000 44.3 43 100 47.5
647 460 48 000 49.8 48 100 53.6

Table 2: Computational results for GenNetEq on a variety of different problem instances. Times
are given in total CPU seconds and averaged across all instances.

It was observed that the values of the proportionality constants have no impact at all on

the running time of GenNetEq; thus, the values shown in Table 2 are averaged over all possible

combinations of pstep and pmax parameters. In particular, these results show that the proportional

flow problem and the equal flow problem can be solved for practical applications in the same amount

9

of computation time, and thus are equivalent from this perspective as well.

In addition, computational experiments for these instances were also performed using the primal

simplex solver included with CPLEX 12.3. Likewise, the values of the proportionality constants

had no impact on the solution times for CPLEX; the results from CPLEX are consistent with the

times reported for the equal flow problem in Morrison et al. (2013). It should be noted that, while

CPLEX outperforms GenNetEq for these problems, CPLEX is a highly-optimized solver for linear

programming problems, and thus will perform quite well on problems of this nature. In all cases,

GenNetEq performs within an order of magnitude of CPLEX’s performance; on average, CPLEX

performs about 6 times faster than GenNetEq across all instances. However, this performance is

weighted towards the smaller instances, which CPLEX is able to solve around 9 times faster than

GenNetEq. For problems with 287 760 arcs or more, CPLEX is only about 5 times as fast as

GenNetEq.

7 Conclusion

This paper describes a reduction for the proportional flow problem to the equal flow problem on a

generalized network. By performing this reduction, algorithms such as GenNetEq can be used for the

former problem without modification. Furthermore, this reduction is used to show that GenNetEq

can be applied to the proportional flow problem directly, with no loss in the worst-case asymptotic

running time of the algorithm. Finally, computational results are presented for an implementation

of GenNetEq showing that it can be solved in the same amount of computation time as the equal

flow problem. These experimental results were compared against the standard linear programming

solver in CPLEX and found to be competitive with it.

Further research into this problem should consider the effects of specialized network structures

on the algorithm; both the processing networks of Koene (1982) and the transportation supply

networks of Bahçeci and Feyziog̃lu (2012) have a significantly restricted network structure with

regards to the topology of the proportional flow arcs. These restrictions may allow for significant

improvements to be made in the solution algorithm.

10

Acknowledgments

The authors would like to thank one anonymous referee for comments which resulted in a significantly-

improved version of this paper. All computational results were obtained with the Simulation and

Optimization Laboratory at the University of Illinois, Urbana-Champaign. This research has been

supported in part by the Air Force Office of Scientific Research (FA9550-10-1-0387), the Depart-

ment of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship

(NDSEG) Program. The third author was supported in part by (while serving at) the National

Science Foundation. The views expressed in this paper are those of the authors and do not reflect

the official policy or position of the United States Air Force, Department of Defense, the National

Science Foundation, or the United States Government.

References

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows. Prentice Hall, New Jersey, 1993.

R. K. Ahuja, J. B. Orlin, G. M. Sechi, and P. Zuddas. Algorithms for the simple equal flow problem.

Management Sci., 45(10):1440–1455, Oct. 1999.

A. I. Ali, J. Kennington, and B. Shetty. The equal flow problem. Eur. J. Oper. Res., 36(1):107–115,

Jul. 1988.

U. Bahçeci and O. Feyziog̃lu. A network simplex based algorithm for the minimum cost proportional

flow problem with disconnected subnetworks. Opt. Lett., 6(6):1173–1184, Aug. 2012.

H. I. Calvete. Network simplex algorithm for the general equal flow problem. Eur. J. Oper. Res.,

150(3):585–600, Nov. 2003.

M. D. Chang, C-H. J. Chen, and M. Engquist. An improved primal simplex variant for pure

processing networks. ACM Trans. Math. Softw., 15(1):64–78, Mar. 1989.

J. W. Chinneck. Processing network models of energy/environment systems. Comput. & Indust. En-

grg., 28(1):179–189, Jan. 1995.

11

J. W. Chinneck and R. H. H. Moll. Processing network models for forest management. Omega, 23

(5):499–510, Oct. 1995.

R. Clark, L. Kennington, R. R. Meyer, and M. Ramamurti. Generalized networks: Parallel algo-

rithms and an empirical analysis. ORSA J. on Comput., 4(2):132–145, 1992.

D. Klingman, A. Napier, and J. Stutz. NETGEN: A program for generating large scale capacitated

assignment, transportation and minimum cost flow networks. Management Sci., 20:814–820,

1974.

J. Koene. Minimal cost flow in processing networks: a primal approach. PhD thesis, Technische

Universiteit Eindhoven, 1982. URL http://alexandria.tue.nl/extra1/PRF4A/8203150.pdf.

D. R. Morrison, J. J. Sauppe, and S. H. Jacobson. A network simplex algorithm for the equal flow

problem on a generalized network. INFORMS J. on Comput., 25:2–12, 2013.

12

