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1 Introduction

Network flow problems are widely-studied, and many different problems in operations research and theoretical
computer science reduce to them. The most well-known version of network flow problem, the maximum-flow
problem on directed graphs, was first studied in-depth by Ford, Jr. and Fulkerson (1956), who provided an
algorithm to find a maximum flow in a directed network, and also proved the Max-flow/Min-cut theorem.

In this paper, we analyze two closely-related problems to the max-flow/min-cut problem, the minimum-waste
flow problem and the maximum blocking-cut problem. The maximum-blocking cut problem was introduced
in Radzik (1993); to the best of our knowledge, the minimum-waste flow problem is first formally described
in this paper. Both of these problems can in fact be solved simultaneously by the pseudoflow algorithm
of Hochbaum (2008); it will be our primary goal in this paper to describe the pseudoflow algorithm and the
intuition behind it from the perspective of minimum-waste flows and maximum blocking-cuts.

The minimum-waste flow problem is motivated by an application in the production and delivery setting.
Given a set of suppliers and a set of consumers in a transportation network, we seek to minimize the amount
of waste produced by suppliers while satisfying the as much of the consumers’ demands as possible. In
particular, each supplier has a fixed quantity of goods that it must either distribute or throw away, and each
consumer has some demand for these goods. If the network is over-capacitated (that is, it is impossible to
satisfy all of the consumer demands due to capacity constraints of the network), goods must be discarded at
some suppliers; our objective is to minimize the amount thrown away.

On the other hand, the maximum blocking-cut problem is a generalization of a the maximum closure problem,
which arises in open-pit mining and other settings (Lerchs and Grossmann, 1965). In this problem, we are
given a set of tasks together with an associated profit or cost and a set of precedence constraints for each
task. In the maximum closure problem, we seek a closed set of tasks (that is, a set of tasks for which all
precedence constraints are satisfied) of maximum profit. The maximum blocking-cut problem generalizes
this by relaxing the precedence constraints but charging a penalty to the objective function for each violated
constraint (Hochbaum, 2001).

As it turns out, the maximum blocking-cut problem and the minimum-waste flow problem are in fact
equivalent; after providing some definitions and examples in Section 2, we prove this equivalence in two ways,
first via linear programming in Section 3, and then by combinatorial methods in Section 4. In Section 5,
we give two variants of the pseudoflow algorithm of Hochbaum (2008), a generic algorithm and a strongly-
polynomial labeling algorithm that mimics the push-relabel algorithm for maximum flows. In Section 6,
we show that the maximum blocking-cut problem reduces trivially to the minimum-cut problem, and show
how the pseudoflow algorithm can be used to retrieve a maximum flow in a network. Section 7 presents a
computational study of the pseudoflow algorithm done by Chandran and Hochbaum (2009). In Section 8, we
briefly describe how the pseudoflow algorithm can be used to solve the parametric version of the maximum
blocking-cut problem, and we offer some concluding remarks in Section 9.

2 Definitions and Examples

All problems and algorithms take as input a directed graph G = (V,A), where n = |V |,m = |A|, and with
real-valued arc capacities cij for all (i, j) ∈ A. A supply vector is given with entries wi for each node i ∈ V . If
wi < 0, we say that node i has demand −wi. For a set S, the induced subgraph of G on S is G[S] = (S,AS),
where AS = {(i, j) | (i, j) ∈ G, i, j ∈ S}. Further, we define the cut [S, S̄] = {(i, j) | i ∈ S, j ∈ S̄}, and the
capacity of the cut as c(S, S̄) =

∑
(i,j)∈[S,S̄] cij . Finally, for a node i, the set of incident arcs to i is δ(i), the

set of outgoing arcs is δ+(i), and the set of incoming arcs is δ−(i).

The maximum blocking-cut problem is now defined:
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(a) A directed graph with
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(b) A maximum blocking-cut. The
value of this set is 6; arcs in red
cross the cut and are subtracted
from the supply sum.
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(c) A minimum-waste pseud-
oflow. The excess/deficit at
every node is given. The
waste (in red) is 6.

Figure 1: An example graph with the maximum blocking-cut and minimum-waste flow.

Definition 2.1 (Hochbaum 2008, Definition 2.1). The surplus of a set S ⊆ V is

surplus(S) =
∑
i∈S

wi −
∑

(i,j)∈[S,S̄]

cij

Definition 2.2 (Hochbaum 2008). The Maximum Blocking-Cut (MBC) problem is to find S ⊆ V that
maximizes surplus(S).

An example problem instance is given in Figure 1(a), and the maximum blocking-cut is shown in Figure 1(b).

A pseudoflow is a function f : A → R such that 0 ≤ fij ≤ cij for each (i, j) ∈ A (with the exception of
Sections 6 and 7, we use the term “pseudoflow” and “flow” interchangeably). We define the excess of a
node i ∈ V as

ex(i) =
∑

j∈δ−(i)

fji −
∑

j∈δ+(i)

fij

and the excess of S ⊆ V as
∑
i∈S ex(i). If ex(i) < 0, we say that node i has a deficit of −ex(i). Furthermore,

we define the waste at a node as max{0, ex(i) +wi}, and the waste of a set S ⊆ V as
∑
i∈S waste(i). For a

pseudoflow f , we say that waste(f) =
∑
i∈V waste(i), and ex(f) =

∑
i∈V ex(i). With these definitions, we

can formulate the minimum-waste flow problem:

Definition 2.3. The Minimum-Waste Flow (MWF) problem is to find a pseudoflow f that minimizes
waste(f).

A minimum-waste pseudoflow for the problem in Figure 1(a) is shown in Figure 1(c).

Some further definitions will be helpful in discussing the problems and proving later results. Let f be a
pseudoflow. We define the residual network of G on the same vertex set as G; for each (i, j) ∈ A,
we create two residual arcs, a forward residual arc 〈i, j〉 and a backwards residual arc 〈j, i〉. The

residual capacity cfij for all forward residual arcs is cij − fij , and is fij for all backwards residual arcs. We
say an arc is saturated if fij = cij , or equivalently if the residual capacity of the forward arc is 0. Finally,
we define the residual capacity of a cut [S, S̄] as∑

〈i,j〉∈[S,S̄]

cfij +
∑

〈j,i〉∈[S̄,S]

cfij =
∑

(i,j)∈[S,S̄]

(cij − fij) +
∑

(i,j)∈[S̄,S]

fij (2.1)

and the flow crossing the cut f(S, S̄) as
∑

(i,j)∈[S,S̄] fij .
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3 Linear Programming Methods

As is standard in combinatorial optimization, we turn to linear programming to provide some insight into
the two problems defined in Section 2. First, we present an integer program for the maximum blocking-cut
problem:

MBCIP : Maximize
∑
i∈V

xiwi −
∑

(i,j)∈A

yijcij (3.1a)

Subject to xi − xj ≤ yij ∀ (i, j) ∈ A (3.1b)

xi, yij ∈ {0, 1} ∀ i ∈ V, (i, j) ∈ A (3.1c)

We create a binary variable xi for each vertex i representing whether i ∈ S or not; then, for each arc (i, j)
we create a variable yij that represents whether or not (i, j) ∈ [S, S̄]. Equation (3.1a) is the surplus of the
chosen set; constraint (3.1b) indicates that if two endpoints of an arc are in different sets such that the arc
leaves S, the arc must be in [S, S̄]. In all other cases, the objective function will be maximized if yij = 0.

The linear programming relaxation of (3.1) is the following:

MBCLP : Maximize
∑
i∈V

xiwi −
∑

(i,j)∈A

yijcij (3.2a)

Subject to xi − xj ≤ yij ∀ (i, j) ∈ A (3.2b)

0 ≤ xi ≤ 1 ∀ i ∈ V (3.2c)

yij ≥ 0 ∀ (i, j) ∈ A (3.2d)

Notice first that we can discard the upper bounds on the yij variables, since xi − xj ≤ 1, and (3.2a)
is maximized when the yij ’s are minimized. Furthermore, notice that the polytope formed by the set of
constraints (3.2b) is precisely the minimum-cut polytope. It is well-known that the matrix defining the
minimum-cut polytope is totally unimodular. Furthermore, Theorem 13 from Qi (accessed June 2011)
states that any TUM matrix taken with variable bound constraints such as (3.2c) is also TUM; thus, the
polytope associated with (3.2) is TUM, which in particular implies that for integral wi and cij , an integral
optimal solution exists and can be found in polynomial time via the ellipsoid method.

The dual linear program of (3.2) is the following:

MWFLP : Minimize
∑
i∈V

ui (3.3a)

Subject to ui +
∑

j∈δ+(i)

fij −
∑

j∈δ−(i)

fji ≥ wi (3.3b)

0 ≤ fij ≤ cij (3.3c)

ui ≥ 0 (3.3d)

Since (3.2) essentially defines a minimum-cut polytope, it is unsurprising that (3.3) looks remarkably similar
to a linear program for maximum-flow. In fact, we claim that the above linear program actually defines the
minimum-waste flow problem. This is formalized in the following theorem:

Theorem 3.1. The dual of the maximum blocking-cut problem is the minimum-waste flow problem.

Proof. An optimal solution f∗, u∗ to (3.3) induces a valid pseudoflow on G, since no arc capacities are
violated, by constraint (3.3c). Furthermore, rewriting contraint (3.3b) shows that u∗ ≥ wi + ex(i) for all i.
If wi + ex(i) > 0, the objective is minimized when u∗ = wi + ex(i), and if wi + ex(i) ≤ 0, u∗ = 0. Therefore,
ui = waste(i). �
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By the strong duality theorem, we know that the value of the maximum blocking-cut problem is exactly
equal to the value of the minimum-waste flow problem. In the next section, we seek a proof of this fact that
does not require an appeal to linear programming methods.

4 The Maximum Blocking-Cut/Min-Waste Flow Theorem

From our linear programming discussion in Section 3, it should be clear that the maximum blocking-cut
problem and the minimum-waste flow problem are intimately related. In this section, we derive similar
results without using results from linear programming theory. This will provide several insights that will be
helpful when developing an algorithm to solve the minimum-waste flow problem.

Let S ⊆ V be a candidate blocking set. Intuitively, supply nodes in S can eliminate waste by sending flow to
nodes in S with positive demand, as well as to nodes outside of S. The remaining supply must be discarded.
This implies that for any set S, the surplus of S is a lower bound on the value of the minimum-waste flow.
We prove this formally in the following lemma:

Lemma 4.1 (Hochbaum 2008, Lemma 4.2). Let f be a minimum-waste flow on G. For any set S ⊆ V ,
surplus(S) ≤ waste(f). In particular, the value of the maximum blocking-cut is a lower bound on the
minimum-waste flow.

Proof. Fix f as a minimum-waste pseudoflow, and let S ⊆ V . Since waste is non-negative, and waste(i) ≥
wi + ex(i), we have

waste(f) ≥ waste(S) ≥
∑
i∈S

wi + ex(S) =
∑
i∈S

wi +
∑
i∈S

 ∑
j∈δ−(i)

fji −
∑

j∈δ+(i)

fij


In the last sum, notice that for each (i, j) ∈ G[S], the term fij appears exactly once in ex(j), and the term
−fij appears exactly once in ex(i). Therefore, the sum telescopes, and the only terms that remain are those
that appear in [S, S̄] and [S̄, S].

Applying the definition of residual capacity to f(S̄, S) and equation (2.1) to f(S, S̄), we get

waste(f) ≥
∑
i∈S

wi + f(S̄, S)− f(S, S̄) =
∑
i∈S

wi + f(S̄, S)−

c(S, S̄)−
∑

(i,j)∈A∩[S,S̄]

cfij


=

∑
i∈S

wi − c(S, S̄) + cf (S, S̄) ≥ surplus(S)

Since S was arbitrary, the value of the maximum blocking-cut is a lower bound on the minimum-waste
flow. �

In fact, we can extend the above lemma to achieve equality when the blocking-cut and flow are optimal. To
do this, we need to argue about the structure of a maximum blocking-cut. If wi + ex(i) > 0, we say that
node i is strictly strong, and if wi + ex(i) < 0, it is strictly weak.

Lemma 4.2. Let S be a maximum blocking-cut in G. Then there exists a minimum-waste pseudoflow f
with no strictly strong nodes in S̄.

Proof. Let f be a minimum-waste pseudoflow that maximizes the waste in S̄, and let W− and W+ be the
set of strictly weak (strictly strong) nodes in G, respectively. Then, define K = S̄ ∩W+ to be the set of
strictly strong nodes in S̄. Let R be the set of all nodes in S̄ reachable from K in the residual graph of f .
Notice that R∩W− = ∅, since otherwise, we could augment flow to reduce the waste of f . Further, notice
that the capacity of any residual arc 〈i, j〉 from S into K ∪ R is 0, since otherwise, we could increase the
waste of f in S̄ by augmenting flow from S.
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Let S+ = K ∪R. Since the excess at all nodes in R \K is 0, we have the following:

0 < waste(K) = waste(S+) =
∑
i∈S+

waste(i) =
∑
i∈S+

wi + ex(i)

Notice that for each arc (i, j) ∈ G[S+], fij appears in ex(j) and −fij appears in ex(i), and so cancel out.
By choice of R and f , therefore, we have the following:

0 < waste(S+) =
∑
i∈S+

wi −
∑

(i,j)∈[S+,S̄\S]

cij +
∑

(i,j)∈[S,S+]

cij

Rearranging shows that −c(S, S+) <
∑
i wi − c(S+, S̄ \ S). In particular, notice that surplus(S ∪ S+) >

surplus(S), contradicting the fact that surplus(S) is maximum. �

By interchanging the roles of W− and W+ in the above proof, as well as swapping “strictly strong” with
“strictly weak”, we can prove the following similar result:

Lemma 4.3. Let S be a maximum blocking-cut, and let f be a minimum-waste pseudoflow. Then there are
no strictly weak nodes in S.

We need one final lemma before proving the main result in this section; this lemma follows a similar line of
argument to the above:

Lemma 4.4. Let S be a maximum blocking-cut and f be a minimum-waste pseudoflow. There is no path
from S to S̄ in the residual graph.

Proof. Define W+ and W− as in Lemma 4.2. Suppose residual arc 〈i, j〉 ∈ [S, S̄] is not saturated by a
minimum-waste pseudoflow f . Then, if there exists a residual path from u ∈ S ∩W+ to i and a residual
path from j to v ∈ S̄ ∩W−, then we can augment flow along this path to reduce the waste. So it must be
the case that at least one of these paths does not exist.

Without loss of generality, suppose there is no residual path from j to v ∈ S̄ ∩ W−; then let R be the
set of all nodes in S̄ reachable from j in the residual graph. Each node in R has non-negative excess, so
waste(R) ≥ 0.

Since for each arc (u, v) ∈ G[R], fuv appears once in ex(v) and −fvu appears once in ex(u), the only
remaining arcs are those leaving or entering R; all arcs leaving R must be saturated, and any entering arc
that is not (i, j) must have 0 flow, by choice of R. Thus, we have shown that

0 ≤ waste(R) =
∑
i∈R

wi + fij −
∑

(u,v)∈[R,S̄\R]

cuv

In particular, we have −cij ≤ −fij ≤ surplus(R), so taking S ∪R as our blocking-cut does not decrease the
value of the surplus. A similar proof holds if instead there is no residual path from S ∩W+ to i. �

Taken together, the above three lemmas prove the maximum blocking-cut/minimum-waste flow theorem,
the analogous statement to the max-flow/min-cut theorem in this setting:

Theorem 4.1 (Maximum blocking-cut/Minimum-waste flow). Let S be a maximum blocking-cut and f be
a minimum-waste pseudoflow. Then surplus(S) = waste(f).

Proof. Let W+ and W− be defined as in Lemma 4.2. Then, by Lemma 4.2, all strictly strong nodes are in S,
and by Lemma 4.3, all strictly weak nodes are in S̄. Furthermore, if i is strictly strong, waste(i) = wi+ex(i);
otherwise, waste(i) = 0. Therefore, we see that waste(f) = waste(S).

Notice that for each (i, j) ∈ G[S], fij appears once in ex(j) and −fij appears once in ex(i). Therefore, we
have

waste(S) =
∑
i∈S

wi −
∑

(i,j)∈[S,S̄]

fij

but by Lemma 4.4, fij = cij for all arcs in [S, S̄] and fij = 0 for all arcs in [S̄, S], proving the result. �
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Notice that the proofs in this section are non-constructive; Hochbaum (2008) provides a constructive proof
of the same result by giving an algorithm that simultaneously finds a minimum-waste pseudoflow and a
maximum blocking-cut. The proof of correctness of this algorithm mimics many of the ideas in this section,
but utilizes more algorithmic ideas and specialized data structures. We believe that the results in this
section provide some novel insights into the problem by distilling out the algorithmic aspects of the problem
and focusing entirely on its mathematical structure. In the following section, we present the algorithm
of Hochbaum (2008).

5 The Pseudoflow Algorithm

In order to describe the pseudoflow algorithm of Hochbaum (2008), we perform the following graph trans-
formation; given a graph G, let the extended graph Gext = (V + r,A∪Ar), where r is a designated “root”
node, and Ar = {(r, i) | i ∈ V and wi > 0} ∪ {(i, r) | i ∈ V and wi ≤ 0}. For each node i ∈ V with positive
supply, let cri = wi, and for each node j ∈ V with non-negative demand, let cjr = wj . Finally, we delete the
supply values at each node in V , leaving a directed graph with only arc capacities (see Figure 2).
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Figure 2: The transformation of the graph in Figure 1(a) into Gext.

In Gext, we consider a blocking-cut S ⊆ V as before; in this setting, the value of the blocking cut S is given
by

surplusext(S) =
∑

i∈δ+(r)

cri −
∑

i∈δ−(r)

cir −
∑

(i,j)∈[S,S̄]

cij

The first two terms in the above expression are simply the weights of the nodes in G, and the last term is
the capacity of the cut, as before.

We seek a pseudoflow f that saturates all arcs in δ(r). The excess of a node is defined as before, and
wasteext(i) = max{0, ex(i)}. As before, we seek a pseudoflow minimizing the waste in the Gext. Notice
that in particular, given a pseudoflow f on Gext, wasteext(f) = waste(f) when f is restricted to arcs in G.
Furthermore, since no capacity constraints are violated, f restricted to G is still a valid pseudoflow, which
implies that finding a minimum-waste pseudoflow on Gext saturating all arcs in δ(r) is equivalent to finding
the minimum-waste pseudoflow in G.

5.1 Normalized Trees

The ideas in Section 4 give a flavor of the pseudoflow algorithm: start with an arbitrary flow, and augment
flow from strictly strong nodes to strictly weak nodes until the cut between strong and weak nodes is
saturated. Once this occurs, Lemma 4.4 implies that we have found an optimal solution.

To this end, we develop a data structure that will enable us to keep the strictly strong and strictly weak nodes
of the graph separate; this data structure is called a normalized tree, and was first described by Lerchs
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and Grossmann (1965). A normalized tree T f is a spanning tree in the extended graph Gext rooted at r,
defined with respect to a pseudoflow f , and satisfying some additional properties.

Before stating the properties that define a normalized tree, we introduce a few further definitions; we say that
an arc is upward (downward) if it points towards (away from) the root. In general, we are not concerned
with the direction of an arc; if it does not matter which way arc (i, j) goes, we will refer to it as an edge,
and denote it [i, j]. The parent of a node i is the unique node adjacent to i on the (undirected) path from i
to r (note that r has no parent). A child of a node i is any adjacent node that is not i’s parent.

Finally, we define a branch of T f as the subtree of T f rooted at one of r’s children. If r has k children, then
there are k branches, denoted T f1 , ..., T

f
k ; the root of the ith branch is denoted as ri. With respect to these

definitions and a pseudoflow f , a normalized tree T f must satisfy the following four properties (Hochbaum,
2008):

1. All edges in δ(r) must be saturated by f .

2. Any edge not in T f must be at its lower or upper bound.

3. The downwards residual arcs in every branch of T f must have strictly positive capacity.

4. The only nodes with non-zero excess are the branch roots.

Notice that Property 4 is a very strong property: it means that the only strictly strong and strictly weak
nodes in the graph are branch roots. We say that a node is strong if it is contained in a branch with a
strictly strong root, and weak otherwise (in particular, branch roots with zero excess are weak).

It is trivial to see that the set of all strong nodes in T f provides an upper bound on the maximum blocking-
cut set, by Theorem 3.1, and since f is a valid pseudoflow on G. This provides an alternate proof of the
following theorem:

Theorem 5.1 (Hochbaum 2008, Property 5). For a normalized tree T f , the surplus of the set of strong
nodes provides an upper bound on the value of the maximum blocking-cut.

Furthermore, Lemma 4.4 gives an optimality criterion for a normalized tree T f :

Corollary 5.1 (Hochbaum 2008, Corollary 4.1). Let T f be a normalized tree. If S is the set of strong nodes
of T f and cf (S, S̄) = 0, then S is an optimal blocking-cut.

This gives us the core for the pseudoflow algorithm: while the residual capacity between strong and weak
nodes is non-zero, augment flow from a strong node to a weak node, making sure to maintain the normalized
tree properties.

5.2 The Pseudoflow Algorithm

We first present a generic version of the pseudoflow algorithm, which is easier to understand, but is not
guaranteed to terminate in polynomial time. As described above, the algorithm picks an arbitrary residual
arc from a strong node s to a weak node w in T f (we say the chosen arc 〈s, w〉 is a merger arc). Let s ∈ T fk
and w ∈ T f` . Then, all of the excess at the branch root rk is pushed to s, across the arc 〈s, w〉, and to the
branch root r`. However, in this process, some edges may become saturated. Let [i, j] be a saturated edge

along this path; then, we send δ = cfij units of flow along the edge; the remaining flow is shipped directly
from i to r, and i becomes the root of a new strong branch. This process is called splitting. Pseudocode
for the generic pseudoflow algorithm is given in Figures 3 and 4.

The Initialize procedure in line 1 of GenericPseudoflow takes an input graph G and converts it to Gext,
and computes an initial normalized tree and pseudoflow on Gext. One feature of the GenericPseudoflow

algorithm is that any initial pseudoflow can be used in procedure Initialize. Two methods compared
in Chandran and Hochbaum (2009) are the simple normalized tree method and the saturate-all method.
The simple normalized tree method saturates all arcs in δ(r), and sets the flow on all other arcs to 0. In this
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Function GenericPseudoflow(G)

1 (Gext, f, T f ) = Initialize(G)

2 S = strong(T f )

3 while cf (S, S̄) > 0 :
4 Choose 〈s, w〉 such that s ∈ S,w ∈ S̄, and cfsw > 0

5 T f = Merge(T f , [s, w])

6 S = strong(T f )

7 return S

Figure 3: The generic pseudoflow algorithm for the maximum blocking-cut problem

Function Merge(T f , [s, w])

1 rk = branch root(s); r` = branch root(w)
2 δ = ex(rk)

3 T f = T f − [r, rk] + [s, w]

4 P = [rk, ..., s, w, ..., r`] ∈ T f
5 for each edge [i, j] ∈ P , in order from rk :

6 if δ ≤ cfij : augment δ flow along [i, j]

7 else: (T f , δ) = Split(T f , [i, j])

8 return T f

Function Split(T f , [i, j], δ)

1 augment cfij units of flow along [i, j]

2 T f = T f − [i, j] + [i, r]

3 return (T f , cfij)

Figure 4: Helper functions for the pseudoflow algorithm

method, each node is a branch root; strong nodes are ones with positive supply, and weak nodes are ones
with non-negative demand. On the other hand, the saturate-all method sets all arcs in Gext to their upper
bounds; strong nodes are determined by the net flow into a node.

However, an arbitrary pseudoflow may be used as an initial pseudoflow, as long as a process of renormalization
is undertaken to construct a valid normalized tree (see the electronic companion to Hochbaum (2008) for
more details). One use for this property is to drastically reduce the number of iterations needed to solve a
problem instance, if a “near-optimal” starting solution is used. In particular, it allows for warm starts, where
the initial pseudoflow is the solution to a closely-related problem instance. We do not provide pseudocode
for Initialize, as it is a relatively straightforward procedure.

To prove the correctness of the pseudoflow algorithm, we need to argue two things: first, that after each
iteration of the while loop at line 3 of GenericPseudoflow the new tree T f is still normalized, and secondly
that the algorithm terminates. The first is shown in the next lemma:

Lemma 5.1. If T f is a valid normalized tree at the beginning of an iteration in GenericPseudoflow, the
resulting tree at the end of the iteration is still a valid normalized tree.

Proof. We must show that the four properties of a normalized tree are satisfied. Since no flow is ever
augmented along arcs in δ(r), they all remain at capacity. Further, the only edges removed from T f in an
iteration are [r, rk] in line 3 of Merge and any saturated arc that we provide as an argument to Split (line 2
of Split); these arcs are all at their upper or lower bounds, so Property 2 is satisfied.

Notice that the path [rk, ..., s, w] reverses direction once it is merged into w’s branch, and since we push a
positive amount of flow along it, all (new) downward residual arcs have positive capacity. Further, if any
downward residual arc in the path [w, ..., r`] reaches 0, that arc is split and leaves the tree, so Property 3
is satisfied. Finally, since we are augmenting flow along P , the balance at every non-branch-root remains
satisfied. Thus, after the completion of an iteration of GenericPseudoflow, T f is still normalized. �
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To establish the finite termination of the GenericPseudoflow algorithm, we prove the following two results:

Lemma 5.2 (Hochbaum 2008, Lemma 6.1). At each iteration of GenericPseudoflow, either the total waste
is decreased or at least one weak node becomes strong.

Proof. At each iteration, a positive amount of flow from rk reaches node s, since downward residual arcs in
T f have non-zero capacity. Then, either a positive amount of flow reaches r` (which decreases total waste),
or there exists [u, v] in the weak branch such that cfuv = 0 and [u, v] is upwards. In this case, u becomes
strong. �

Furthermore, assuming input data is integral, we can prove the following bound on the number of executions
of the while loop in line 3:

Lemma 5.3 (Hochbaum 2008, Corollary 6.3). Let [S, S̄] be an optimal blocking-cut for G. Then, the
GenericPseudoflow algorithm terminates in O(nC∗) iterations, where C∗ = c(S, S̄).

Proof. Let M be the sum of arc capacities in δ+(r); this is the amount of generated waste at the beginning
of the algorithm, using the simple flow initialization. Then, since all arcs across the optimal blocking cut are
saturated (Lemma 4.4), the waste can decrease to at most M −C∗. Since there can be at most n iterations
of the while loop in GenericPseudoflow before the total waste is decreased (Lemma 5.2), there can be at
most O(nC∗) iterations of the while loop before the optimality conditions are satisfied. �

An example of the pseudoflow algorithm run on the graph in Figure 1(a) is shown in Figure 5.
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(a) The initial normalized tree
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(b) Arc (b, c) enters the normalized tree; the excess at
b is pushed to c and reaches capacity, so (b, c) is split.
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(c) Arc (d, e) enters the tree; all excess at d is pushed
to e. Node e remains weak, and node d becomes weak.
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(d) Arc (a, d) enters the tree; all excess at a is pushed to

d; cfde = 1, so the arc is split. Node d becomes strong.

Figure 5: The pseudoflow algorithm run on the graph in Figure 1(a), transformed into Gext (Figure 2). We
use the simple normalized tree initialization procedure. Strong nodes are bold, all other nodes are weak.
Arcs not shown are at their lower bounds, and dashed arcs are non-tree arcs at their upper bounds. After
the third step, no residual arcs exist between S and S̄, so the algorithm terminates with the maximum
blocking-cut shown in Figure 1(b) and the minimum-waste flow shown in Figure 1(c).
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Clearly, we have a lot of flexibility in the choice of merger arc in GenericPseudoflow. If we choose the
merger intelligently, we can get a substantial improvement in the running time of the algorithm; this is the
topic of the next section.

5.3 The Pseudoflow-Labeling Algorithm

The pseudoflow algorithm shares many characteristics with the push-relabel algorithm of Goldberg and
Tarjan (1988) for maximum flows in directed graphs. Recall that in the push-relabel algorithm, each node
has an associated label which is an lower bound on the shortest path distance from that node to the sink.
An arc is chosen to push flow across if the label of the tail is greater than the label of the head, and the arc
has positive residual capacity. If no such arc exists and the solution is non-optimal, the label of some node
is increased.

We employ a similar idea for the pseudoflow-labeling algorithm, following the description in Chandran and
Hochbaum (2009), which uses slightly more standard terminology than Hochbaum (2008). Each node i in
the graph has an associated label l(i); we say that the labeling function is valid if for every residual arc (i, j),
we have l(i) ≤ l(j) + 1, and furthermore every strictly weak node j has l(j) = 0. We say than a residual arc
〈i, j〉 is admissible if l(i) = l(j) + 1.

Let P = 〈i1, i2, ..., w〉 be a path from node i1 to a strictly weak node w in the residual graph, and let l be a
valid labeling. Since l(w) = 0, and l(i1) ≤ l(i2) + 1 ≤ l(i3) + 2 ≤ ... ≤ l(w) + len(P ), we have shown that in
a valid labeling, l(i) is a lower bound on the distance from i to a strictly weak node in the residual graph,
and thus the label of any node is upper-bounded by n.

Function PseudoflowLabel(G)

1 (Gext, f, T f ) = Initialize(G)
2 l(i) = 0∀ i ∈ V
3 S = strong(T f )

4 while cf (S, S̄) > 0 :
5 rk = argmin{l(ri) | ri ∈ S and ri is a branch root}
6 stack = [rk]

7 〈〈 Depth-first search for an admissible arc 〉〉
8 while stack 6= ∅ :
9 s = stack.pop()

10 if ∃ w ∈ δ+(s) such that l(s) = l(w) + 1 and cfsw > 0 :
11 Merge(T f , (s, w))
12 stack = ∅
13 else if s has no children with label l(s) : l(s) += 1
14 else:
15 for each child u of s with label l(s) : stack.push(u)

16 S = strong(T f )

17 return S

Figure 6: The pseudoflow-labeling algorithm.

If every node in a branch has label k, we say that the branch is a label-k branch. A branch is an active
branch if its root is strictly strong and it is not a label-n branch. At each iteration of the pseudoflow-labeling
algorithm, we select an admissible merger arc 〈i, j〉 such that i is in an active branch, and l(i) has the lowest
label among all nodes in active branches. This choice of label ensures that j is weak, and thus 〈i, j〉 is a
valid merger arc in line 4 of GenericPseudoflow.

To ensure that we can quickly find a node of lowest label in an active branch, we further enforce the
monotonicity property on the labeling function l; specifically, for each downwards branch edge [i, j], we must
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have either l(i) = l(j) or l(i) = l(j) − 1. This ensures that the branch root is the lowest-labeled node,
and along any path from the branch root, node labels are non-decreasing. We can then find the set of
lowest-labeled nodes in the branch by performing depth-first search from the branch root.

Let T fk be the branch with lowest-labeled root; if no admissible arc is found in the T fk , then we find a node i
such that l(i) = l(rk) and every child j of i satisfies l(j) = l(i)+1. We then increment i’s label by 1. This new
labeling clearly satisfies the monotonicity property, by construction. Pseudocode for the pseudoflow-labeling
algorithm is given in Figure 6; the following lemma shows that the new labeling produced by an iteration of
PseudoflowLabel is valid.

Lemma 5.4. If l is a valid labeling at some iteration of PseudoflowLabel, and the algorithm relabels node
i in that iteration, the new labeling l′ is valid.

Proof. By Lemma 5.2, notice that once a strictly-weak node satisfies its demand, it never becomes strictly
weak again. Furthermore, since only labels of strong nodes are increased, all strictly weak nodes w have
l′(w) = 0.

Thus, it remains to show that for all residual arcs (u, v), we have l′(u) ≤ l′(v)+1. Notice that no other labels
except i changed, so we only need to consider edges [i, j] incident to i. There are three cases to consider:

Edge [i, j] enters node i: In this case, l′(j) = l(j) ≤ l(i) + 1 ≤ l′(i) + 1.

Edge [i, j] leaves node i and node j is strong: By choice of i, we have that l(i) ≤ l(j), so l′(i) =
l(i) + 1 ≤ l(j) + 1 = l′(j) + 1.

Edge [i, j] leaves node i and node j is weak: Since no arcs from i were admissible, we see that l(i) <
l(j) + 1; therefore, l′(i) = l(i) + 1 ≤ l(j) + 1 = l′(j) + 1.

Thus, l′ is a valid labeling. �

Notice that the labeling procedure is only a method of choosing between the possible merger arcs; it does not
affect any other portion of the algorithm, and thus PseudoflowLabel is still correct. However, the running
time is much improved. To show this, we first need the following lemma:

Lemma 5.5. Let (i, j) be the admissible arc chosen at some iteration of PseudoflowLabel; let rk be the root
of the branch containing i and r` the root of the branch containing j. Then, for each vertex u ∈ [rk, ..., i],
we have l(u) = l(i), and for each edge [u, v] ∈ [j, ..., r`], we have l(u) ≥ l(v). In particular, the path
[rk, ..., i, j, ..., r`] has non-increasing labels.

Proof. The first condition follows by choice of i; the second condition follows from the monotonicity of l. �

To bound the running time, we first analyze the number of merge steps that can be performed over the
course of the algorithm.

Lemma 5.6. The total number of merge steps performed by PseudoflowLabel is O(mn)

Proof. Let 〈i, j〉 be a merger arc at some iteration t1; this arc then enters the normalized tree T f , or becomes
saturated. If 〈i, j〉 is to be a merger arc again at some later iteration t3 > t1, it must have previously left
T f at iteration t2, where t1 < t2 < t3. To leave the normalized tree, the residual arc 〈j, i〉 must become
saturated, and then 〈i, j〉 must become admissible again. If 〈j, i〉 becomes saturated, by Lemma 5.5, we must
have l(j) ≥ l(i). For 〈i, j〉 to become admissible again, node i has to be relabeled at least once; since node
labels are bounded by n, arc 〈i, j〉 can be a merger arc at most n times. �

This in turn yields the following result:

Theorem 5.2 (Chandran and Hochbaum 2009, Lemma 4.1). The total running time of PseudoflowLabel

is O(mn2).
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Proof. The Merge procedure iterates through the for loop in line 5 at most n times, and all other steps
(including the Split procedure) take a constant amount of work, meaning that Merge does O(mn2) work
over the course of the algorithm, by Lemma 5.6. For each node s in line 10 of PseudoflowLabel, we only
need to check for admissible arcs once per label, so the total number of checks over the course of the algorithm
is O(mn).

Since node labels are bounded by n, the relabeling step in line 13 executes at most O(n2) times. Finally, for
each value k of the lowest-labeled branch root, we scan every arc in T f at most twice, and every arc outside
of T f at most once, so the DFS procedure takes O(m) work for this phase, or O(mn) total work over the
course of the algorithm, yielding a worst-case running time of O(mn2). �

We can further improve the running time of the PseudoflowLabel algorithm by using the dynamic trees data
structure of Sleator and Tarjan (1983). This data structure enables Merge to be implemented in O(log n) time
instead of O(n) time as presented above. This, together with Lemma 5.6, gives an O(mn log n) running time
bound on the PseudoflowLabel algorithm. In fact, using dynamic trees and a variant of PseudoflowLabel
that selects an admissible arc from the highest-labeled branch root, Hochbaum and Orlin (2007) show an
O(mn log(n2/m)) worst-case running time bound on the pseudoflow-labeling algorithm, the same worst-case
time as push-relabel for the max-flow problem. In the next section, we show how to use the pseudoflow-
labeling algorithm to solve the max-flow problem in the same complexity.

6 Maximum Flows from Minimum-Waste Pseudoflows

As might be guessed from the LP formulation of the maximum blocking-cut problem in Section 3, the
maximum blocking-cut problem and the min-cut problem are equivalent. Thus, we can use the pseudoflow
algorithm to solve for maximum flows in a graph. In this section, we first prove the equivalence of the
min-cut and maximum blocking-cut problem, and then briefly describe how to recover maximum flows from
a minimum-waste pseudoflow, following a description of the same procedure in Hochbaum (2008).

For this problem, we are given a directed graph Gst = (V +s+ t, A), with two distinguished nodes, a source
s and a sink t. In this section, we use the term “flow” in the traditional sense, that is, a function f : A→ R
that has 0 excess at every vertex except the source and sink. We transform Gst into Gext by collapsing s
and t into a single vertex r; we can now apply the pseudoflow algorithm to this problem.

We can also transform Gst into a node-weighted graph by removing s and t, and setting wi = csi for each
node adjacent to s, and wj = −cjt for each node incident to t. Nodes incident to neither s nor t have weight
0; if a node is incident to both s and t, we send min{csi, cit} units of flow along it and delete the saturated
arc, setting the node weight of i to the remainder. Clearly this procedure can be reversed without loss of
information.

Theorem 6.1 (Hochbaum 2008, Lemma 3.1). Given a graph Gst and the reduced graph G, a minimum cut
set S in Gst is a maximum blocking-cut in G, and vice versa.

Proof. In Gst, for a set S ⊆ V , the surplus of S is defined as c(s, S) − c(S, t) − c(S, V \ S). Thus, the
maximum-surplus set is given by

max
S⊆V
{c(s, S)− c(S, t)− c(S, V \ S)} = max

S⊆V
{c(s, V )− c(s, V \ S)− c(S, t)− c(S, V \ S)}

= c(s, V )− min
S⊆V
{c(s, V \ S) + c(S, V \ S) + c(S, t)}

= c(s, V )− min
S⊆V+s,s∈S

c(S, S̄)

Since c(s, V ) is constant, this completes the proof. �

The above theorem states that to find a minimum cut in Gst, we simply need to find a maximum blocking-
cut. However, more often we are interested in finding a maximum flow, not just the associated bottleneck.
Clearly, the minimum-waste pseudoflow is not a maximum flow! To recover the maximum flow, we need to
do a bit more work.
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Given a minimum-waste pseudoflow f on Gst, we construct a maximum flow via the following procedure.
Create two additional nodes s̄ and t̄; add an arc from t and every strictly strong node in V to t̄, and add an
arc from s̄ to s and every strictly weak node in V . All arcs in δ(s̄) and δ(t̄) have infinite capacity.

Using the flow decomposition procedure of Ahuja et al. (1993), we can find a set of paths in the residual graph
from every strictly strong node in V to s̄; augmenting flow along these paths will eliminate the excess at
every strictly strong node in V . Furthermore, since all strictly strong nodes are in the same partition as s, no
flow is augmented across the cut, leaving those arcs saturated by Lemma 4.4. We can then repeat the same
procedure by augmenting flow from t̄ to every strictly weak node, thus eliminating their deficit (Hochbaum,
2008).

The flow decomposition procedure can be run in O(mn) time using depth-first search, or in time O(m log n)
using the dynamic trees algorithm of Sleator and Tarjan (1983). In the latter case, this does not decrease
the worst-case complexity of the pseudoflow-labeling algorithm by more than a constant factor. In the
next section we show that in practice the pseudoflow-labeling algorithm with the above flow computation
procedure consistently outperforms the current best solver for maximum flow problems.

7 Computational Results

In Chandran and Hochbaum (2009), the pseudoflow algorithm is compared computationally to the push-
relabel algorithm of Goldberg and Tarjan (1988). In particular, they use the transformation described at
the beginning of Section 6 to transform a graph Gst with distinguished source and sink nodes into a graph
Gext; then, they use the procedure in Section 6 to recover the actual flow value from the graph, and compare
the running times and number of iterations taken to an implementation of the push-relabel algorithm run
on Gst.

The implementation of the pseudoflow algorithm uses the strongly-polynomial variant described in Sec-
tion 5.3, with the following modifications. First, they do not employ a dynamic trees data structure to merge
the tree structures, instead using the O(mn2) variant of the algorithm. Secondly, they use the highest-label
variant of PseudoflowLabel presented at the end of Section 5.3. Finally, they employ the following two
heuristics, which do not affect the worst-case running time of the algorithm, but substantially improve the
performance in practice:

Heuristic 1. For each vertex in the graph, the index of the last arc scanned in search of a merger is
maintained. If a vertex is visited more than once in successive iterations, the search for a merger arc is
resumed from this index, instead of from the beginning of the list of incident arcs. When the vertex label is
increased, this pointer is reset to 0.

Heuristic 1 ensures that for each node, every arc incident to that node is scanned at most once while the
node’s label remains constant. If arc (i, j) is not admissible at some point in the algorithm, then l(i) ≤ l(j).
Since node labels are strictly increasing, this means that until i’s label increases, l(i) < l(j) + 1 at all future
iterations. Thus, this heuristic does not invalidate the search for admissible arcs.

Heuristic 2. If a branch root has label l(rk), and no vertices in the graph have label l(rk)− 1, the labels of
all nodes in r’s branch are set to n.

In particular, since within a branch labels are non-decreasing, this implies that for all i ∈ T fk , l(i) ≥ l(rk).
Furthermore, since no node in the graph has label l(rk) − 1, and the node labels are lower bounds on the

distance from the node to a strictly weak node, this means that no residual path from any node in T fk exists
to a strictly weak node. Thus, it is part of the minimum blocking-cut, and Heuristic 2 discards it for the
remainder of the algorithm.

The pseudoflow algorithm with these heuristics is compared to the most efficient implementation of the
push-relabel algorithm for maximum flows by Goldberg (accessed June 2007). This implementation does not
make use of dynamic trees, and so has a worst-case running time of O(mn2) as well. In addition, it employs
similar heuristics to Heuristics 1 and 2.

Chandran and Hochbaum (2009) compare the two algorithms across ten different classes of randomly gen-
erated graphs using the DIMACS graph generator. Across all ten classes, problem sizes range from 128
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vertices and 7920 arcs to 1 048 578 vertices and 3 145 664 arcs. It was found that the pseudoflow-labeling
algorithm outperformed the push-relabel algorithm by factor of 2 or 3 in most cases. The pseudoflow algo-
rithm never performed worse than the push-relabel algorithm, and in only one class of generated problems
did push-relabel perform evenly with the pseudoflow algorithm, and even then only on the largest problem
sizes generated for that instance.

8 Sensitivity Analysis

In many applications, we are concerned with not only the value of the minimum-waste flow for a specific set
of supply values, but we are also interested in solving the problem over a range of supply values. This may
represent, for example, the changing market value over time of the ore being mined from an open-pit mining
project (Hochbaum, 2001). Or, in the context of the maximum-flow problem, this represents the situation
where the capacities of arcs incident to source and sink nodes are given parametrically.

In particular, we study the case where the supply at nodes is given as a monotone increasing function of
a parameter λ, and the demand at nodes is a monotone decreasing function of λ. The goal is to identify
multiple maximum blocking-cuts for various values of λ.

There are two cases we consider; first, the case when we are given a series of breakpoints λ1 < λ2 < ... < λk,
that is, k parameter values for which we are interested in computing a maximum blocking-cut. After solving
the complete problem for λ1, we can leave the distance labels alone, and renormalize the tree, to then
solve the problem for λ2 (this is precisely the “warm start” procedure described in Section 5.2). The tree
renormalization process takes O(n) time, which means that the total running time for the algorithm is
O(mn log n + kn); when k = O(m log n), this analysis runs within a constant factor of the time needed to
solve a single problem instance (Hochbaum, 2008).

On the other hand, we may be interested in finding all of the breakpoint values – that is, every value of
λ at which the set of vertices forming the maximum blocking-cut changes. As it turns out, this problem
can be solved in the same computational complexity as solving a single problem instance! Notice that as
λ increases, the size of the maximum blocking-cut can only increase; strong nodes in the normalized tree
can only become stronger, and some weak nodes may become strong. We can exploit this structure using a
method of iterated contraction to narrow down on the values of each of the points at which the maximum
blocking-cut set changes. This procedure is quite similar to the method of Gallo et al. (1988) for performing
sensitivity analysis on a max-flow/min-cut instance. This algorithm is somewhat complex and beyond the
scope of this paper; for more details, we refer the reader to Hochbaum (2008) and Gallo et al. (1988).

9 Conclusion

In this paper, we present the work of Hochbaum (2008) from the perspective of the maximum blocking-
cut/minimum-waste flow problem, instead of the more traditional max-flow/min-cut viewpoint. We believe
that the minimum-waste flow problem is a relevant problem in and of itself, and demonstrate how it can be
solved using the pseudoflow algorithm.

In addition, we perform analysis of the problems using linear programming techniques, as well as providing
an independent proof of the equality of the maximum blocking-cut problem and the minimum-waste flow
problem, and we give a proof from Hochbaum (2008) showing that these problems are equivalent to the
max-flow/min-cut problems. Finally, we present some computational results from Chandran and Hochbaum
(2009) comparing the pseudoflow algorithm to the best-known implementation of the push-relabel algorithm,
which show that the pseudoflow algorithm performs better in practice than push-relabel on most problems.

Future research on this problem could be directed in a number of different directions. First, many problems
of interest deal with generalized networks; a generalized network is a directed graph with arc capacities,
together with a set of arc multiplicities µij , where if fij units of flow leave vertex i, µijfij units of flow
arrive at vertex j. A modified version of the push-relabel algorithm exists for the generalized network set-
ting (Tardos and Wayne, 1998), and it would be interesting to adapt the pseudoflow algorithm to generalized
networks to see what improvements can be made.

14



Finally, a number of network flow problems come with additional side constraints on the flow values that
travel across arcs. One example of such a constrained network problem is the equal flow problem, in
which some subsets of arcs in the graph are required to carry identical amounts of flow Ahuja et al. (1999).
It would be interesting to extend the pseudoflow algorithm to settings where the networks have additional
side constraints, in an attempt to find better algorithms for these problems.

The pseudoflow algorithm is an important new development in the field of computer science theory and
operations research, and should be useful in a large number of applications – both in existing algorithms
that employ max-flow solvers as a black box, and in the study of new and related problems, such as the
maximum blocking-cut/minimum-waste flow problem.
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