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Abstract

The simple assembly line balancing problem (SALBP) is a well-studied NP-complete problem
for which a new problem database of generated instances was published in 2013. This paper
describes the application of a branch, bound, and remember (BB&R) algorithm using the cyclic
best-first search strategy to this new database to produce provably exact solutions for 86% of
the unsolved problems in this database. A new backtracking rule to save memory is employed
to allow the BB&R algorithm to solve many of the largest problems in the database.

1 Introduction

The assembly line balancing problem is a well-studied problem with many applications, including
the automotive industry, consumer electronics, and household items (Baybars, 1986; Sarker and
Pan, 2001). This problem has many variants with different objectives and side constraints; see
Battaia and Dolgui (2013) for a recent survey of problem formulations and solution techniques. One
of the most basic assembly line balancing problems is the Simple Assembly Line Balancing Problem
(SALBP). In this problem, a set of tasks T"= {1,2,...,n} is given that must be accomplished by a
set of workers or stations. In many applications, stations are designed to complete specific tasks;
however, the SALBP relaxes this assumption so that all stations are considered identical. Each task
requires a certain amount of time ¢; (called the processing time) to complete, and each station
has a specified fixed amount of time ¢ (called the cycle time) that it can spend completing tasks.

Additionally, a directed acyclic graph G, called the precedence graph, is given with vertex
set T and arc set A. An arc (i,7) € A indicates that task ¢ must be completed before task j. A
task i is a predecessor (alternately, successor) of j if there is a path from i to j (alternately,
from j to 7) in G} if this path has length 1, 7 is a direct predecessor or successor. The set of direct

predecessors (successors) of j is denoted P; (F}), and the set of predecessors (successors) of j is P}

(F?).



The objective of SALBP is to find the minimum number of stations needed to complete all
tasks, subject to the cycle time at each station, that satisfies all relations given in the precedence
graph. Given a set of tasks S, assigned to the m'* station, define the idle time I,, as the amount
of time the station is not working; that is, I, =c— ) jes,, tj- For a complete assignment of tasks
to stations, the total idle time [ is the sum of the idle times at each station.

Despite the fact that SALBP is NP-complete (the bin-packing problem is a special case where
G has no edges), a number of well-known exact algorithms exist for solving SALBP. An early
algorithm developed by Hoffmann (1992) called Eureka used an effective heuristic together with
a branch-and-bound algorithm that explored in both the forward and reverse directions (i.e., by
assigning tasks to either the first stations first or the last stations first). Extensions to the Hoffman
heuristic were proposed in Fleszar and Hindi (2003) that were able to perform quite well on a subset
of standard benchmark problems.

Johnson (1988) describes an algorithm called FABLE which incorporates a number of bounding
rules and dominance rules for the SALBP problem; additionally, Nourie and Venta (1991) give an
algorithm called OptPack which uses a dominance rule called the tree dominance rule. Another
branch-and-bound algorithm, called Salome (Scholl and Klein, 1997, 1999), also incorporated a
bi-directional search strategy together with several highly effective lower bounds, dominance rules,
and a new branching strategy. Another lower bound, based on a LP relaxation of SALBP, is
described in Peeters and Degraeve (2006). A dynamic-programming heuristic for SALBP is given
in Bautista and Pereira (2009) that incorporates bounding mechanisms into the DP table. Finally,
Scholl and Becker (2006) provide a comprehensive survey of SALBP discussing various bounds and
solution methods (both exact and heuristic).

More recently, Sewell and Jacobson (2012) give a highly-effective algorithm for SALBP that is
able to solve all 269 test instances in a list of benchmark instances, including one instance that
had previously been open for over a decade. This algorithm incorporates a three-phase solution
procedure together with the cyclic best-first search (CBFS) strategy, as well as a number of good
lower bounds and a memory-based dominance rule. A new set of benchmark instances, as well as
a instance generator called SALBPGen, was subsequently released by Otto et al. (2013); this dataset
contains 6825 problem instances, ranging in size from small (20 tasks) to very large (1000 tasks),

and incorporates a number of features commonly seen in real-world data.



This paper extends the algorithm of Sewell and Jacobson (2012) with a new backtracking
procedure for very large problem instances, and presents computational results on the new dataset
of Otto et al. (2013). In this new dataset, 1359 instances are listed as unsolved; the most significant
contribution of this paper is to demonstrate that 1172 instances (i.e., all but 187 instances) can
each be solved in under 1 hour of computation time, and a further 184 have the best-known
solution improved upon. Moreover, all of the previously-solved instances in this database are also
solved by this algorithm. Additionally, a proof of compatibility between the dominance rules used
in this algorithm is provided. Finally, a brief study of the remaining unsolved instances is also
performed to determine what characteristics make them challenging for the Sewell and Jacobson
(2012) algorithm.

This paper is organized as follows: Section 2 provides a description of the new SALBP problem
database. Section 3 describes the branch, bound, and remember algorithm used to solve these
problems, and Section 4 presents the suite of computational results performed against the instances

in the database. Finally, Section 5 gives some concluding remarks.

2 Problem Testbed Description

The SALBPGen algorithm of Otto et al. (2013) was designed to emulate properties seen in real-world
assembly lines, particularly from the automotive industry. In particular, two graph properties
were identified that commonly appear in the precedence graph G for these problems; these are
bottleneck tasks and chains. A third property is that of modular design, which is an optional
additional generation parameter that groups nodes into related clusters or modules, and builds a
super-precedence graph on the modules. However, the modular design option is not used in the
benchmark dataset.

A bottleneck task j has high in- and out-degree in G; furthermore, it is the only direct successor
for at least two tasks in P;, and it is the only direct predecessor for at least two tasks in Fj. A
chain of tasks, on the other hand, is a set of tasks C' C T" with |C| > 2 such that C forms a path
in G and |P;| = |Fj| =1 for each j € C.

Another important property of SALBP instances is the order strength; this value, denoted

by OS, is computed as |[A(GT)|/(}), where A(GT) is the arc set of G, the transitive closure



of G. That is, G is the graph with vertex set T' where arc (i,j) indicates that task i is a (not
necessarily direct) predecessor of task j. As stated in Scholl and Klein (1999), “Small values of O.S
indicate that the precedence constraints are not very restrictive such that many sequences of tasks
are feasible.” There are some indications that middle values of O.S are harder than low or high
order strength values. The generator SALBPGen allows an input parameter to be given specifying
the desired order strength of the graph.

A third important parameter that can be controlled by SALBPGen is the distribution of task
times; for each instance, task times are randomly generated according to some pre-specified prob-
ability distribution. The problem database contains instances with task times that have been

generated according to three different distributions, described below:

e Short task time distribution - task times are drawn from a normal distribution with the mean

centered around small times

e Bimodal task time distribution - task times are drawn from a combination of two normal

distributions with means centered around small and large times

e Centralized task time distribution - task times are drawn from a normal distribution with a

mean task time of ¢/2

The first two task time distributions emulate properties seen in real-world instances of the assembly
line balancing problem; the latter is designed to produce challenging instances.

The problem database used for testing in this paper was generated and described in Otto et al.
(2013). The database contains instances with n = 20, 50, 100, and 1000 tasks (called small, medium,
large, and very large, respectively). There are 525 instances of each problem size, which have been
generated with varying order strengths and distribution of task times. A third of the problems
(called BN instances) have been generated with bottleneck nodes having minimum degree eight (or
minimum degree four in the small instances). A third (called CH instances) have been generated
with 40% of the nodes in chains, and a third of the instances (called MIX instances) have no such
requirements on the structure of the precedence graph.

For each problem instance in the medium dataset, there are 9 additional permuted instances,

which share a common precedence graph and set of task times, but have randomly assigned the task



times to tasks. Thus, there are a total of 6825 instances in the dataset. Of these instances, Otto
et al. (2013) report that 4 small instances, 846 medium instances (including permutations), 170
large instances, and 339 very large instances have not yet been solved, for a total of 1359 unsolved
instances. No other papers were found in the literature that have improved upon these results thus

far.

3 The BB&R Algorithm for SALBP

Algorithm 1: BBR(¢, G, ¢)
1 ComputeDirection(t,G)

UB = ModifiedHoffmannHeuristic(¢, G, c)
LByoot = max(LB1, LB2, LB3, BPLB) (( Global lower bound is best lower bound at the root ))

4 UB = RunSearch(UB, LB,qot, CBFS)
5 if 7 < 7y, and previous search was not (provably) optimal :
6 UB = RunSearch(UB, LByoot, BrFS)

«w N

Algorithm 2: RunSearch(UB, LB, mode)

1¢c=0
2 root = (&, T) ( The root node has no assigned tasks to any station )
3 X =root

4 while search tree is non-empty, ¢ < nym, T < Tiim, and LBgot < UB':
5 if max(LBlx,LB2x,LB3x,BPLBx) < UB or X is dominated: prune X

6 else if X dominates another subproblem Y : delete Y
7 else if X is terminal: UB = min(m,UB)
else:
9 for each valid S,,+1, given Ax:
10 Y = (AXUSm_H,UX\Sm+1,5f(,SQX,...,ST)§,Sm+1)
11 Insert Y into search tree and increment c
12 ( If too many subproblems are generated at a node, the search continues in a
heuristic manner ))
13 if more than sy, subproblems have been generated from X :
14 stop generating subproblems

15 Select a new X according to the mode (CBFS or BrFS)
16 return UB

To solve the instances in this new database, a branch, bound, and remember (BB&R) algorithm
called BBR was used. Branch, bound, and remember is an extension of branch-and-bound that stores,

or remembers, all of the subproblems generated over the course of the search. The remember phase



allows for the use of the memory-based dominance rule in Section 3.2. The BBR algorithm is
described in detail in Sewell and Jacobson (2012); individual components are briefly described
herein, together with some enhancements that allow the algorithm to be used for the very large
problem instances.

The BBR algorithm, described in Algorithms 1 and 2, operates in a three-phase procedure;
the first phase uses a heuristic method called the Modified Hoffman Heuristic (described in Sec-
tion 3.1) to produce a valid solution as a good upper bound. The next phase of the algorithm
uses this upper bound together with a number of pruning and dominance rules (Section 3.2) in
a branch-and-bound search for the optimal solution. Given a subproblem X, these lower bounds
are denoted LBlx,LB2x,LB3x, and BPLBx; in this phase, BBR uses the cyclic best-first search
(CBFS) exploration strategy to guide the search. If the second phase cannot prove optimality for
the problem, the final phase repeats the branch-and-bound search using breadth-first search (BrF'S)
instead of CBFS. Both branch-and-bound phases are subject to a (global) CPU time limit 7;,,, and
search tree size limit ng;,.

Formally, a subproblem in the branch-and-bound tree maintains the following information:
S ={A,U,S5,5,...,Sn}, where A is the set of currently-assigned tasks, U is the set of tasks that
still need to be assigned to stations (that is, U =T\ A), and S; C A,i € {1,2,...,m} is the sets of
tasks assigned to station 1.

Given a current subproblem X = (Ay,Ux, S5, S5, ..., 9% ), new subproblems are generated
and added to the search tree using the station-oriented branching method, which computes a
number of possible full loads for the next available station, where station .S; is fully loaded if there
are no tasks with satisfied precedence constraints that can be added to S; and satisfy the cycle
time constraint at S;. A depth-first search mechanism is used to generate children at the current
subproblem, in the following manner: each task which has all its precedence constraints satisfied
at the current subproblem is considered for addition to the next station S,,+1. For each such task
1, depth-first search is used to enumerate all possible full loads for the next station such that it
contains task ¢. Once a full load has been generated for S,,+1, a new subproblem is generated and
either pruned or inserted into the search tree. If the number of possible full loads at the current
subproblem exceeds a hard limit sy, no additional children are generated at that subproblem, and

the algorithm proceeds heuristically.



3.1 Initialization

To compute a good initial upper bound for SALBP, BBR uses the modified Hoffmann heuristic
(MHH) described in Sewell and Jacobson (2012). This heuristic is based off the procedure of
Hoffmann (1963), which generates good, but not necessarily optimal solutions to the problem. The
MHH constructs a solution to the SALBP instance, one station at a time, by generating up to 1000
possible assignments of tasks to the next station. The MHH differs from the Hoffman heuristic in

that it chooses a generated assignment to maximize

> (t + aw; + B Fy| — ), (1)
Jjeu
where «, 3, and v are parameters, and w; = t; + ZkeF; tr is the weight of task j and all its
successors. Increasing « encourages assignments that satisfy precedence constraints for tasks with
large completion times. Additionally, increasing [ encourages assignments that satisfy a large
number of precedence constraints. Finally, v acts as a tie-breaker, encouraging assignments with
relatively few items. Setting o = § = = 0 yields the (regular) Hoffman heuristic.
The initialization phase of the BBR algorithm calls the MHH routine with a range of parameter
values, chosen as a, 3 € {0,0.005,0.01,0.015,0.02} and v € {0,0.01,0.02,0.03}. After trying all
combinations of these parameter values, the MHH routine returns the best solution found as a good

initial upper bound.

3.2 Pruning Rules

The BBR algorithm uses four different lower bounds and four dominance rules to prune the search
space explored by the branch-and-bound tree. The lower bound rules are defined below (for a more
detailed explanation of LB1,LB2, and LB3, see Scholl and Becker (2006) and Scholl and Klein
(1997)):

LBl = [Serty/e], LB2=|{j €T | t>c/2}|+ [WTLL=T gy = [50 puy),



where
1 ift; > 2¢/3

2/3 ift; = 2c/3
1/2 ife/3 <tj <2¢/3

1/3 ift; =¢/3.

At each subproblem in the branch-and-bound tree, the three lower bounds LB1, LB2, and LB3
are computed; if the maximum of these three values is greater than or equal to the value of the
incumbent solution, then the subproblem can be pruned. On the other hand, if the three lower
bounds above do not allow the subproblem to be pruned, a fourth lower bound, called BPLB (or
bin-packing lower bound) is used to solve SALBP with the precedence constraints relaxed. As
the bin-packing problem itself is NP-hard, a separate branch-and-bound solver is used to find good
solutions for BPLB; if no good solutions can be found within 1 second of computation time, then
the BPLB solver is terminated so that more progress can be made in the primary search tree.

Additionally, four different dominance rules are used to attempt to prune subproblems; a sub-
problem X dominates another subproblem Y if for every subproblem of Y, there exists a subproblem
of X that is at least as good. In this case, only X needs to be explored, since if Y has an optimal

subproblem, so will X. The four dominance rules used in BBR are as follows:

e The Maximal Load Rule - If a partial solution contains a station load S; and an unassigned
task j such that S; U{j} does not violate the cycle time ¢ or the precedence constraints, then

that partial solution can be pruned.

e The Extended Jackson Rule - For a given partial solution, if the set of tasks assigned to the
last station contains some task j, and there exists a task ¢ such that (i,7) ¢ A, t; > t;, and
F; C F7, and task i can replace task j without exceeding the cycle time at the station or the

precedence constraints, then a subproblem containing this partial solution can be pruned.

e The No-Successors Rule - If the set of tasks assigned to the last station in a partial solution
at some subproblem has no successors, and there exists an unassigned task which has at least

one successor, then the current subproblem can be pruned.

e The Memory-based Dominance Rule - For this rule, it is necessary to store every subproblem



that has been identified in the branch-and-bound tree in a hash table so that the rule can
be checked efficiently. The rule states that if there exists a previously-identified subproblem
in the search tree that has assigned all of the tasks as the current subproblem, and uses the

same number or fewer stations, then the current subproblem can be pruned.

Whenever multiple dominance rules are used, it is important to ensure that there is no mutual
dominance that could prevent the optimal solution from being found. First note that the memory-
based dominance rule is only ever applied to two subproblems that are already in the search tree,
and it only deletes subproblems with a strictly worse solutions. Therefore, it is impossible for the
memory-based rule to ever prune an optimal solution. Furthermore, no rule above ever yields a
non-maximally-loaded station, so the first rule will never conflict.

The only remaining possible conflict is between the extended Jackson rule (EJR) and the no-

successors rule (NSR). The following lemma establishes that these two rules can be used in concert.

Lemma 1. Let X and Y be two subproblems in the search tree for an instance of SALBP. IfY

dominates X via the EJR, and Y is dominated by the NSR, then X is also dominated by the NSR.

Proof. Suppose not. Let X = (A,U,S1,S59,...,5m-1,5n) and Y = (AU, S1, 52, ..., Sm-1,5),)
(since X and Y are related by the EJR, it must be the case that they each have m assigned
stations, and the first m — 1 are identical). Then, there must exist j € S,, and i € U such that
F; C Ff and S}, = (Sm — {j}) U{i}. By the NSR, F;" = &, which implies that F; = & as well.
All other tasks in S], are identical to tasks in Sy,, which means that S,, has no successors and can

also be pruned by the NSR. ]

Consider a set of subproblems in the search space that are all dominated by either the EJR or
the NSR, and suppose that all optimal solutions to SALBP are descendants of some subproblem
in this set. Then, it must be the case that some subproblem X in the set is pruned by the EJR
and not the NSR, and furthermore, the subproblem Y that dominates X must also be in the set.
In particular, there must exist a pair X and Y for which X is dominated only by the EJR and Y
is dominated only by the NSR (otherwise, all subproblems in the set would be prunable by only
a single dominance rule, and both the EJR and NSR have been proven correct independently).

However, Lemma 1 implies that no such pair can exist. This proves the following corollary:



Corollary 1. The EJR and NSR are compatible dominance rules for SALBP

3.3 Cyclic Best-First Search

The cyclic best-first search (CBFS) strategy determines the search order in the branch-and-bound
tree. This search strategy, described in detail in Sewell and Jacobson (2012) and Sewell et al. (2012),
can be thought of as a hybrid method between depth-first search (DFS) and best-first search (BFS).
This strategy maintains a value m, and the next subproblem chosen for exploration is selected to
be the “most promising” subproblem among all subproblems with a partial solution containing
exactly m stations. Once this subproblem is explored, m is incremented by 1; if m > UB, then m
is reset to 0. In this way, the search tree is explored cyclically, which allows for complete solutions
to be explored early in the search process (as in DFS), but also uses a measure of best to guide the
search process (as in BFS).

The most promising subproblem within a level m of the search tree is determined with a heuristic

function,

v(s) =1/m—0.02-|U|,

which attempts to weight subproblems with a higher priority if they are more likely to lead to an
optimal solution. In particular, the I/m term encourages the exploration of subproblems which
have relatively low idle time per station. The remaining term acts as a tie-breaking function that
encourages the exploration of subproblems with large numbers of remaining tasks, since these tasks
are likely to be smaller and easier to schedule. The value of the parameter can be empirically

chosen, and was selected to match the value in Sewell and Jacobson (2012).

3.4 Search Directions

Some instances of SALBP appear to be substantially easier to solve if tasks are assigned in reverse
order, that is, to the last station first. A heuristic measure is used by BBR to determine which
direction to construct partial solutions. This heuristic computes, for each task in 7', the following
quantities:

C
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Here, Ej; is a lower bound on the earliest station to which task j can be assigned, and given an
upper bound M on the number of stations needed, L; = M — L;- +1 is an upper bound on the latest
station to which task j can be assigned. These quantities are used to determine the approximate
size of the search tree for the first five levels; if the forward-built search tree appears to be smaller,
the instance is solved in the forward direction, and vice versa.

To compute this approximation on the size of the search tree, let f,, = [{j | E; < m}| and
rm = [{j | L; < m}| for some m; that is, fm, is a bound on the number of tasks that could be
assigned to the m!” station in the forward search tree, and 7, is a bound on the number of tasks
that could be assigned to the m'* station in the reverse search tree. Then, if H?zl fi < H?:1 r; the
instance is explored in the forward direction, and in the reverse direction otherwise. The quantities
computed here give a heuristic estimate of the growth of the search tree in the forward and reverse
directions; the idea is that if the search tree in the forward direction for the first five levels is smaller
than the corresponding tree in the reverse direction, this trend is extrapolated to deeper regions of

the tree. If the two bounds are equal, the forward direction is chosen arbitrarily.

3.5 Backtracking

For instances that are particularly large, or for which each station can hold relatively few tasks, it
is not practical to store the entire list of assigned and unassigned tasks, as well as the complete list
of stations used in a partial solution at some subproblem in the search tree. In these settings, a
backtracking method is incorporated that attempts to minimize memory usage within the branch-
and-bound tree. This backtracking method was not incorporated in the algorithm described in
Sewell and Jacobson (2012).

In this mode of operation, a subproblem in the branch-and-bound tree is represented by & =
{p, Sm}, where p is a pointer to the subproblem’s parent, and S, is a list of tasks assigned to the
current station. Since all subproblems must be stored in the tree for the memory-based dominance
rule to be used, the complete partial solution represented by subproblem S can be reconstructed by
following the parent pointers from S to the root of the search tree. Furthermore, the idle time and
the hash value used to store the subproblem in the hash table for the memory-based dominance
rule can be computed by tracing the parent pointers, and thus do not need to be stored at each

subproblem.
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The advantage of this method is that it substantially reduces the amount of memory used at a
particular subproblem; this is most beneficial when the number of tasks assigned to any particular
station is small compared to the total number of tasks. The principle disadvantage of this method is
that it increases the computational time needed to process a subproblem. However, for the medium-
sized instances in the database, it was observed that this method only increased the computation

time needed to solve instances by about 30%.

4 Computational Results

The BBR algorithm for SALBP was implemented in C++, and run on all instances in the database
generated by Otto et al. (2013) using a single core of an Intel Core i7-930 2.8GHz quad-core
processor, with 12GB of available memory. All running times reported are given in CPU seconds,
and do not include the time needed to initialize the memory for the branch-and-bound tree, which
is performed at the beginning of the algorithm. Each test was run with a time limit of one hour;
the small, medium, and large instances each had a limit on the size of the search tree of 60000000
nodes, and the very large instances had an imposed limit of 80000 000 search tree nodes, since the
use of the backtracking code allows for more subproblems to be stored. All problems had a limit
of syim = 10000 children generated at a subproblem. The backtracking code was used for the very
large problem instances; however, the bin-packing lower bound was disabled, due to its relative
ineffectiveness and the large computation time for these problems. The results in this section
are compared against the best results found by Salome (Scholl and Klein, 1997); Salome was run
with relatively short time limits (20s, 50s, 70s, and 100s for the small, medium, large, and very
large instances, respectively). An Excel spreadsheet containing the results from all experiments is
available as an online supplement, and Table 1 describes the notation used in the remainder of this
section.

Table 2 summarizes the results for the runs against all problem instances. As shown, the BBR
algorithm is able to solve all of the small- and medium-sized instances in the database, and all but
12 of the large instances. Finally, it is able to solve 350 of the very large instances. Additionally,
Salome did not solve any problem instances that were unsolved by BBR. Moreover, for the large

instances, the BBR algorithm was able to improve upon the best-known upper bound in ten cases,
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Size

Salome Solved
BBR Solved
BBR Improved

BBR Matched

BBR Worse
r

Hr,0r
|7 < 75|
Hit Nism
Hit ¢,

TMHH

MHH Opt
m

TBPLB
Hr%

The size of the instance: small, medium, large, or very large

The number of instances solved by Salome in Otto et al. (2013)

The number of instances for which BBR is able to verify optimality

The number of instances for which BBR improved Salome’s solution, but did not very
optimality

The number of instances for which BBR matched Salome’s solution, but did not verify
optimality

The number of instances for which BBR’s solution was worse than Salome’s

Total running time in CPU seconds of BBR, including the time spent computing the
MHH and BPLB

Average and standard deviation of computation time (in CPU seconds)

Number of instances solved in the time limits given to Salome in Otto et al. (2013)
Number of instances for which BBR exceeded ny;,

Number of instances for which BBR exceeded tj;;,

Average time spent computing the MHH

Number of instances proved optimal by the MHH

Average computation time in CPU seconds for instances not solved at the root
Average time spent computing BPLB for instances which are not solved at the root
Average percentage of total computation spent solving the BPLB for instances not
solved at the root

Table 1: Description of the headings and entries used in Table 2-5.

leaving only two unsolved large instances which could not be solved to optimality or improved.

Similarly, the BBR algorithm was able to improve the best-known upper bound for 149 very large

instances, and it matches the best upper bound in five instances. However, for 21 of the very large

instances, the solution found by BBR was worse than the solution found by Salome.

Size Salome Solved BBR Solved BBR Improved BBR Matched BBR Worse
Small 521 525 0 0 0
Medium 4404 5250 0 0 0
Large 355 513 10 2 0
Very Large 186 350 149 5 21

Table 2: Number of solved problem instances overall.

Table 3 presents timing data for the BBR algorithm, broken down by problem size. From this

table it can be seen that, despite the relatively large amount of computation time afforded to

BBR compared to Salome, in most cases this extra time was unnecessary. In 99% of the problem

instances (6594 out of 6638), BBR was able to solve the instance in the same time limit as Salome.

Furthermore, while performing comparisons between different implementations and environments

13



is difficult at best, it was estimated that the machine performing the BBR experiments is at most
7 times as fast as the machines running Salome. Even under this very conservative estimate, BBR

is able to solve 6434 of the instances in the dataset faster than the (adjusted) time limits given to

Salome.
Size fr o, |7 < 7| minT max7 Hit ng,  Hit G,
Small 0.0018 0.0040 525 0 0.02 0 0
Medium 0.21 5.2 5243 0 220 0 0
Large 38 170 478 0 1600 12 0
Very Large 1100 1600 348 3.0 >3600 86 89

Table 3: Average running times (in CPU seconds) for all instances

Additional data were collected on the performance of the MHH and the bin-packing lower
bound, shown in Table 4. These data show that about two-thirds of the problem instances could
be solved by the MHH; in general the MHH can be computed quite quickly. Even so, 97% (2064
instances out of 2108) that were not proved optimal by the MHH were solved to optimality within
the time limits imposed on Salome. For instances which were not solved at the root, about 40% of

the total computation time was spent solving the bin-packing lower bound.

Size v MHH Opt. r TBPIB  Mr%
Small 0.0001 428 0.0057 | 0.0007 11%
Medium 0.15 3447 0.58 041  53%
Large 0.09 305 91 17 61%
Very Large 7.6 322 2800 - -

Table 4: Details of the MHH and the BPLB from the computational experiments.

For the 26 very large instances that BBR was unable to improve or match the best-known solution,
it was hypothesized that the heuristic choosing the exploration direction was picking the worse
direction, so these 26 instances were rerun in the opposite direction. For the 5 instances in which
BBR matched the best-known solution, four were improved by running in the opposite direction.
Additionally, for the 21 instances where BBR was unable to match the best-known solution, running
in the opposite direction allowed the algorithm to improve the best-known solution for 19 of them,
leaving only two very large instances for which BBR was unable to match or improve the best-known

solution reported by Otto et al. (2013). These results imply that in some cases, the direction-finding
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heuristic is not choosing the most effective exploration direction (the results from running in the
opposite direction are not included in Table 2-5).

To see if any further additional improvements could be gleaned from the results, the bin-packing
lower bound was computed at the root node for each of the very large instances. The bin-packing
lower bound was greater than LB1, LB2, and LB3 in 156 instances. Furthermore, the bin-packing
lower bound was better than the lower bound reported by Salome in 33 instances. However, the
root bin-packing lower bound did not allow any additional problem instances to be solved.

A further analysis of the instances unsolved by BBR was performed, and the results are presented
in Table 5. These results show that instances with lower order strength are often more challenging
for BBR (45% have order strength of approximately 0.2, and 87% have order strength of less than
0.6); the graph structure has a less-clear relationship to instance difficulty. However, the most
telling indicator of problem difficulty is the task time distribution: all 187 unsolved instances have

a central distribution of task times.

Structure Order Strength Peak location
Size BN CH MIX | 0.2 0.6 0.9 | bottom central bimodal
Large 7 4 1 10 2 0 0 12 0
Very large | 50 50 7 | 75 75 25 0 175 0

Table 5: Problem statistics for the unsolved instances by BBR.

Additionally, an analysis of order strength and task distribution times with respect to the
performance of BBR was performed on the large and very large problem instances. It was first
observed that the MHH was able to prove optimality for only three of the large or very large
instances with the central task time distribution. Moreover, the average computation time for the
BBR algorithm was largest for the large and very large problem instances with the central task time
distribution. These observations support the hypothesis that the central distribution of task times
creates challenging instances of SALBP.

Furthermore, it was observed that as the order strength increased, the MHH was less able to
prove optimality for instances in the database: the MHH was able to prove optimality for two-
thirds of the large and very large instances with OS = 0.2, 63% of the instances with OS = 0.6,
but only 29% of the instances with OS = 0.9. The relationship between the average computation

time of BBR and the OS was less clear; however, one interesting relationship that was observed is
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that for the unsolved instances, those with low OS hit the node limit more frequently (77 of the
85 unsolved large and very large instances with OS = 0.2), and instances with higher OS hit the
time limit more frequently (82 of the 102 large and very large instances with OS > 0.6). This can
be explained by noting that instances with low order strength have more viable station loads, and

thus more subproblems in the search tree must be explored before the tree is exhausted.

5 Conclusion

This paper describes computational results obtained from applying the branch, bound, and re-
member algorithm with cyclic best-first search of Sewell and Jacobson (2012) to the new database
of simple assembly line balancing problems presented by Otto et al. (2013). The algorithm BBR
is able to solve all unsolved small and medium instances, and over 90% of the large instances.
Furthermore, using a backtracking procedure designed to reduce memory usage, the BBR algorithm
is able to solve 164 of the 339 unsolved very large instances, and improve the best-known solution
for an additional 172 of these instances.

Future research on this problem should focus on improving the various pruning rules and domi-
nance relations to enable greater exploration of the search space; additionally, it would be beneficial
to develop methods for optimizing memory usage for the very large instances to enable a larger
state space to be explored for these instances. Furthermore, it is apparent that choosing the search
direction properly may have an impact on the solution quality of the algorithm; thus, future re-
search will attempt incorporate the bi-directional search rule from Salome into BBR. Moreover, it
may be possible to develop more specialized algorithms that are able to perform more efficiently
for instances with specialized structure (for example, instances with a large number of bottleneck
nodes, or a centralized distribution of task times). Finally, more study can be done on the impact
of various structural parameters on the performance of BBR and other similar algorithms. For ex-
ample, the exact relationship between OS and instance difficulty is currently unknown; thus, more
experiments can be done to determine this relationship. Along these lines, it would also be helpful
to build a permuted data set of larger problem instances to allow for a more detailed study of

problem characteristics.
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